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We found in [1,page 208 last paragraph] a quite interesting

result (stated here in theorem2) which is actually neither clearly

stated nor proved. This result provides an expression for each
coefficient of the polynomial det(P-I-XI) (P is a stochastic matrix)

involving sums of products of pij's (without any change in sign, as for

the usual expansion which is a sum of minors). The aim of this paper

is to prove it as a consequence of a particular expansion of

determinants which is given in theoreml; this expansion is a sum of

products of off-diagonal entries and negated row sums of the matrix

(with no sign added).
The main tool used here is the W-graphs introduced in [1].

Definition [1]: Let L be a finite set and let a subset W be selected in L.
A graph on L is called a W-graph is it satisfies the following

conditions:

(1) every point meL\W is the initial point of exactly one arrow,

and any arrow has its initial point in L\W.
(2) there are no closed cycles in the graph.

Note that (2) may be replaced by

(2') every point me L\W is the initial point of a sequence of

arrows leading to some point neW.

These W-graphs may be seen as disjoint unions of directed

trees on L with roots in W.

Notations:
The set of W-graphs will be denoted by G(W).
Suppose that we are given a set of numbers pij (i,je L), then for

any graph g on L we define the number r(g) by:
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(1) ir(g)= I Pm n
(m-mn)E g

n (empty graph) = 1.

For any subset W of L, we put;

(2) 6(W)= , i (g)
ge G(W)

In particular, o(L)= 1.

n
Theoreml: Consider a nXn matrix A=(aij) with row sums ri = Xaij and

i=l

define
L={1,2,...,n+l} and

Pij = aij 1i ij n
(3) Pi,n+l = -ri 1 <i < n.

Then

(4) det(M) = (-l)n a({n+l})

where a is defined as above.

An easy consequence will be

theorem2: Consider a nXn matrix P=(pij) with constant row sums
ri=r, then its characteristic polynomial has the form:

n
(5) P(Z) = c vi (A-r)i

i=1

where
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(6) oi= C(W).
iWl=i

Remark: Note that this last result applies also to matrices M with

different row sums, by considering the matrix M' obtained by adding

to M one column containing the negated row sums and one zero row.

Proof of theoreml;

Consider the function A defined by

A(A) = (-l)n cf({n+l}).

We have to show that A(A)=det(A). This will be done by proving

some properties of the function A.

Propertvl: If A has a zero column, then A(A)=O.

Denote by m the index of the zero column and put

L = (1, 2,..., n+l}, W ={n+l }, and L'= L\{m}

G = set of W-graphs on L
G'= set of W-graphs on L'.

Note that, because of the zero-column property of A, any graph g of G
satisfying n(g)•O will not have any arrow leading to m, so that g can

be described as a graph g' of G' to which has been added an arrow
leading from m to any other point is L'; we call this graph g(g', i).

Because all these graphs are distinct (for distinct g' or i) we get:

A(A)= 7R (g) = A ir(g(g',i)) = E 7 (g') E Pmi = 0.
ge G(W) g'E G'(W) g'E G'(W) i L'

ic L'

The last equality follows from the definition of the pij's.

This ends The proof of propertyl.
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Property2: The application A is invariant under permutation of

indices of the matrix (that is by succesive permutation of rows and
corresponding columns).

This property is obvious.

Propertv3: If A is a block-diagonal matrix A=diag(A1,.....,Ap), then
A(A)=A(A1) ..... A(Ap).

This has only to be proved for p=2 (for larger p, one can use a
recursion). Denote by m the size of the matrix Al and let

L' = { 1,2,...,m,n+1}, L" = {m+l, ... ,n, n+l }, W = (n+l },

G'= set of W-graphs on L',
G"= set of W-graphs on L".

Then, by the same reasoning as in propertyl, any graph g of G such
that r(g)•O is constructed as the union of two graphs g'e G'and g"e G"

with the point n+l in common and we obtain

A(A)= (-l)n A n(g)= (-l)m(l1)n- m E c(g')n(g") = A(A 1 )
ge G(W) g'E G'(W)

g"E G"(W)

A(A2).

Property4: If two matrices Al and A2 are the same, except for one
row, then A(A1+A2) = A(A1) + A(A2).

This comes from the fact that, for any W-graph g, this
additivity property is satisfied by n(g).

End of the proof of theorem2:
Property4 implies that if we want to prove that A(A) = det(A)

for any matrix M, we have only to check this for matrices having one
non-zero entry on each row.

By virtue of propertyl, this is true if there exists a zero-
column. If there is not any zero-column, then there is exactly one
non-zero entry in each row and in each column, and there exists a
permutation of indices which transform A into diag(Al,...,Ap) for
some matrices A 1,...,Ap, where the non-zero entries of Ai occur only
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in positions immediately above the diagonal and in the lower-left
corner, or Ai is a lx l matrix; i.e., Ai has the form (we give the picture
for a 4x4 matrix):

(OaOO
0ObO

dOOO

a•O, b•O, cO0, dO.
If p>l, we get the result by induction. The problem is then reduced to
the case p=l and n>l, i.e. to the study of A(A) when the non-zero

entries of A are above the diagonal and in the lower-left corner. In
that case, the W-graphs g for which n(g)•O are described by the

following property:
for any l_<i<n, the arrow starting from i leads to i+l (1 if i=n) or

n+1.

Such a graph is exactly determined by the arrows leading to n+1. For

any 1<k<n, there exist exactly ( k) W-graphs having k arrows

leading to n+l, and all these graphs g satisfy i7(g) = (-l)k no, where no

is the product of the non-zero entries of A. Finally we obtain

A(A) = (-l)n A ('k)(-l)k io= (-l) n + l+:o = det(A).
k=l

This ends the proof of theoreml.

Proof of theorem2: Apply theoreml to P-XI. The row sums of this
matrix are all equal to r-k. Note that there exists a one-to-one map

between the set of {n+l}-graphs on {1, 2,...., n+l) and the set of all
W-graphs, W non-empty, on {1, 2,...., n}. This map associates with any
{n+l}-graph g on the set (1, 2,...., n+l } the graph g' obtained by
deleting the point n+l and all arrows leading to it. Note that if g has k
arrows leading to n+l, then, using (1) and (3), we obtain:
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it(g) = (X-r)k t(g').

This equality, inserted in (2) and (4) leads to the result.
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